Skip to main content

Composite tools and workflows

Composite tools let you define multi-step workflows that execute across multiple backend MCP servers with parallel execution, conditional logic, approval gates, and error handling.

Overview

A composite tool combines multiple backend tool calls into a single workflow. When a client calls a composite tool, vMCP orchestrates the execution across backend MCP servers, handling dependencies and collecting results.

Key capabilities

  • Parallel execution: Independent steps run concurrently; dependent steps wait for their prerequisites
  • Template expansion: Dynamic arguments using step outputs
  • Elicitation: Request user input mid-workflow (approval gates, choices)
  • Error handling: Configurable abort, continue, or retry behavior
  • Timeouts: Workflow and per-step timeout configuration
info

Elicitation (user prompts during workflow execution) is defined in the CRD but has not been extensively tested. Test thoroughly in non-production environments first.

Configuration location

Composite tools are defined in the VirtualMCPServer resource under spec.config.compositeTools:

apiVersion: toolhive.stacklok.dev/v1alpha1
kind: VirtualMCPServer
metadata:
name: my-vmcp
spec:
incomingAuth:
type: anonymous
config:
groupRef: my-tools
# ... other configuration ...
compositeTools:
- name: my_workflow
description: A multi-step workflow
parameters:
# Input parameters (JSON Schema)
steps:
# Workflow steps

For complex, reusable workflows, you can also reference external VirtualMCPCompositeToolDefinition resources using spec.config.compositeToolRefs.

Simple example

Here's a composite tool that searches arXiv for papers on a topic and reads the top result:

VirtualMCPServer resource
spec:
config:
compositeTools:
- name: research_topic
description: Search arXiv for papers and read the top result
parameters:
type: object
properties:
query:
type: string
description: Research topic to search for
required:
- query
steps:
# Step 1: Search arXiv for papers matching the query
- id: search
tool: arxiv.search_papers
arguments:
query: '{{.params.query}}'
max_results: 1
# Step 2: Download the paper (required before reading)
# Note: fromJson is needed when the MCP server returns JSON as text
# rather than structured content. This is common for servers that
# don't fully support MCP's structuredContent field.
- id: download
tool: arxiv.download_paper
arguments:
paper_id:
'{{(index (fromJson .steps.search.output.text).papers 0).id}}'
dependsOn: [search]
# Step 3: Read the downloaded paper content
- id: read
tool: arxiv.read_paper
arguments:
paper_id:
'{{(index (fromJson .steps.search.output.text).papers 0).id}}'
dependsOn: [download]

What's happening:

  1. Parameters: Define the workflow inputs (query for the research topic)
  2. Step 1 (search): Calls arxiv.search_papers with the query from parameters using template syntax {{.params.query}}
  3. Step 2 (download): Waits for search (dependsOn: [search]), then downloads the paper. The fromJson function parses the JSON text returned by the server, and index accesses the first paper's ID.
  4. Step 3 (read): Waits for download, then reads the paper content.

When a client calls this composite tool, vMCP executes all three steps in sequence and returns the paper content.

Structured content vs JSON text

MCP servers can return data in two ways:

  • Structured content: Data is in structuredContent and can be accessed directly: {{.steps.stepid.output.field}}
  • JSON text: Data is returned as a JSON string in the text field and requires parsing: {{(fromJson .steps.stepid.output.text).field}}

The arxiv-mcp-server in this example uses JSON text, so we use fromJson. Check your backend's response format to determine which approach to use.

Use cases

Incident investigation

Gather data from multiple monitoring systems in parallel:

VirtualMCPServer resource
spec:
config:
compositeTools:
- name: investigate_incident
description: Gather incident data from multiple sources in parallel
parameters:
type: object
properties:
incident_id:
type: string
required:
- incident_id
steps:
# These steps run in parallel (no dependencies)
- id: get_logs
tool: logging.search_logs
arguments:
query: 'incident_id={{.params.incident_id}}'
timerange: '1h'
- id: get_metrics
tool: monitoring.get_metrics
arguments:
filter: 'error_rate'
timerange: '1h'
- id: get_alerts
tool: pagerduty.list_alerts
arguments:
incident: '{{.params.incident_id}}'
# This step waits for all parallel steps to complete
- id: create_summary
tool: docs.create_document
arguments:
title: 'Incident {{.params.incident_id}} Summary'
content: 'Logs: {{.steps.get_logs.output.results}}'
dependsOn: [get_logs, get_metrics, get_alerts]

Deployment with approval

Human-in-the-loop workflow for production deployments:

VirtualMCPServer resource
spec:
config:
compositeTools:
- name: deploy_with_approval
description: Deploy to production with human approval gate
parameters:
type: object
properties:
pr_number:
type: string
environment:
type: string
default: production
required:
- pr_number
steps:
- id: get_pr_details
tool: github.get_pull_request
arguments:
pr: '{{.params.pr_number}}'
- id: approval
type: elicitation
message:
'Deploy PR #{{.params.pr_number}} to {{.params.environment}}?'
schema:
type: object
properties:
approved:
type: boolean
timeout: '10m'
dependsOn: [get_pr_details]
- id: deploy
tool: deploy.trigger_deployment
arguments:
ref: '{{.steps.get_pr_details.output.head_sha}}'
environment: '{{.params.environment}}'
condition: '{{.steps.approval.content.approved}}'
dependsOn: [approval]

Cross-system data aggregation

Collect and correlate data from multiple backend MCP servers:

VirtualMCPServer resource
spec:
config:
compositeTools:
- name: security_scan_report
description: Run security scans and create consolidated report
parameters:
type: object
properties:
repo:
type: string
required:
- repo
steps:
- id: vulnerability_scan
tool: osv.scan_dependencies
arguments:
repository: '{{.params.repo}}'
- id: secret_scan
tool: gitleaks.scan_repo
arguments:
repository: '{{.params.repo}}'
- id: create_issue
tool: github.create_issue
arguments:
repo: '{{.params.repo}}'
title: 'Security Scan Results'
body: 'Found {{.steps.vulnerability_scan.output.count}} vulnerabilities'
dependsOn: [vulnerability_scan, secret_scan]
onError:
action: continue

Workflow definition

Parameters

Define input parameters using JSON Schema format:

VirtualMCPServer resource
spec:
config:
compositeTools:
- name: <TOOL_NAME>
parameters:
type: object
properties:
required_param:
type: string
optional_param:
type: integer
default: 10
required:
- required_param

Steps

Each step can be a tool call or an elicitation:

VirtualMCPServer resource
spec:
config:
compositeTools:
- name: <TOOL_NAME>
steps:
- id: step_name # Unique identifier
tool: backend.tool # Tool to call
arguments: # Arguments with template expansion
arg1: '{{.params.input}}'
dependsOn: [other_step] # Dependencies (this step waits for other_step)
condition: '{{.steps.check.output.approved}}' # Optional condition
timeout: '30s' # Step timeout
onError:
action: abort # abort | continue | retry

Elicitation (user prompts)

Request input from users during workflow execution:

VirtualMCPServer resource
spec:
config:
compositeTools:
- name: <TOOL_NAME>
steps:
- id: approval
type: elicitation
message: 'Proceed with deployment?'
schema:
type: object
properties:
confirm: { type: boolean }
timeout: '5m'

Error handling

Configure behavior when steps fail:

ActionDescription
abortStop workflow immediately
continueLog error, proceed to next step
retryRetry with exponential backoff
VirtualMCPServer resource
spec:
config:
compositeTools:
- name: <TOOL_NAME>
steps:
- id: <STEP_ID>
# ... other step config (tool, arguments, etc.)
onError:
action: retry
retryCount: 3

Template syntax

Access workflow context in arguments:

TemplateDescription
{{.params.name}}Input parameter
{{.steps.id.output}}Step output (map)
{{.steps.id.output.text}}Text content from step output
{{.steps.id.content}}Elicitation response content
{{.steps.id.action}}Elicitation action (accept/decline/cancel)

Template functions

The following functions are available for use in templates:

FunctionDescriptionExample
fromJsonParse a JSON string into a value{{(fromJson .steps.s1.output.text).field}}
jsonEncode a value as a JSON string{{json .steps.s1.output}}
quoteQuote a string value{{quote .params.name}}
indexAccess array elements by index{{index .steps.s1.output.items 0}}

Accessing step outputs

When an MCP server returns structured content, you can access output fields directly:

# Direct access when server supports structuredContent
result: '{{.steps.fetch.output.data}}'
items: '{{index .steps.search.output.results 0}}'

This is the simplest approach and works when the backend MCP server populates the structuredContent field in its response.

Working with JSON text responses

Some MCP servers return structured data as JSON text rather than using MCP's structuredContent field. When this happens, use fromJson to parse it:

# Parse JSON text and access a nested field
paper_id: '{{(index (fromJson .steps.search.output.text).papers 0).id}}'

This pattern:

  1. Gets the text output: .steps.search.output.text
  2. Parses it as JSON: fromJson ...
  3. Accesses the papers array and gets the first element: index ... 0
  4. Gets the id field: .id

How to tell which approach to use: Call the backend tool directly and inspect the response. If structuredContent contains your data fields, use direct access. If structuredContent only has a text field containing JSON, use fromJson.

Complete example

A VirtualMCPServer with an inline composite tool using the arxiv-mcp-server:

apiVersion: toolhive.stacklok.dev/v1alpha1
kind: VirtualMCPServer
metadata:
name: research-vmcp
namespace: toolhive-system
spec:
incomingAuth:
type: anonymous
config:
groupRef: research-tools
aggregation:
conflictResolution: prefix
conflictResolutionConfig:
prefixFormat: '{workload}_'
compositeTools:
- name: research_topic
description: Search arXiv for papers and read the top result
parameters:
type: object
properties:
query:
type: string
description: Research topic to search for
required:
- query
steps:
- id: search
tool: arxiv.search_papers
arguments:
query: '{{.params.query}}'
max_results: 1
- id: download
tool: arxiv.download_paper
arguments:
paper_id:
'{{(index (fromJson .steps.search.output.text).papers 0).id}}'
dependsOn: [search]
- id: read
tool: arxiv.read_paper
arguments:
paper_id:
'{{(index (fromJson .steps.search.output.text).papers 0).id}}'
dependsOn: [download]
timeout: '5m'

Note: The example above assumes you have:

  • An MCPGroup named research-tools.
  • An arxiv-mcp-server deployed as an MCPServer or MCPRemoteProxy resource that references the research-tools group.

For a complete example of configuring MCP groups and backend servers, see the quickstart and tool aggregation guides. For complex, reusable workflows, create VirtualMCPCompositeToolDefinition resources and reference them with spec.config.compositeToolRefs:

VirtualMCPServer resource
spec:
config:
groupRef: my-tools
compositeToolRefs:
- name: my-reusable-workflow
- name: another-workflow